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Abstract Certain kinds of hosts are commonly regarded
as being more suitable than other for rearing European
cuckoos (Cuculus canorus) — insectivores that lay small
eggs and have open, shallow nests — although empirical
tests of cuckoo host selection are lacking. We analysed
host use by the European cuckoo in 72 British passerines
that are potential hosts and for which there was infor-
mation available on life-history variables and variables
related to cuckoo-host coevolution, such as rate of
parasitism, rejection rate of non-mimetic model eggs and
degree of cuckoo-egg mimicry of host eggs. The relative
population size of the host species affected parasitism
rate most strongly, followed by relatively short duration
of the nestling period, and the kind of nest, with cuckoos
selecting open-nesting hosts. However, the effect of the
nestling period could be related to host body size and the
kind of nest used, because hole-nesting species normally
have longer nestling periods than open-nesters. We
re-analysed the data excluding hole nesters and corvid
species (species with larger body mass), but the results
remained identical. The European cuckoo may benefit
from selecting hosts with short nestling periods because
such hosts provide food for their nestlings at a very high
rate. When only those species known as cuckoo hosts
were analysed, the variable that best accounted for the
parasitism rate was duration of the breeding season.
Therefore, availability of potential hosts in both time
and space is important for cuckoos in selecting hosts.

J.J. Soler (<) - M. Soler

Departamento de Biologia Animal y Ecologia,
Facultad de Ciencias, Universidad de Granada,
E-18071 Granada, Spain

e-mail: jsolerc@goliat.ugr.es, Fax: + 34-58-243238

A.P. Moller

Laboratoire d’Ecologie, CNRS URA 258,
Université Pierre et Marie Curie, Bat.A,
7¢éme étage, 7 quai St. Bernard, case 237,
F-75252 Paris Cedex 5, France

Key words Brood parasitism - Cuckoo Host
abundance - Host characteristics - Host-parasite
coevolution

Introduction

Studies of specialisation by parasites on particular hosts
have expanded our understanding of host-parasite co-
evolution (Price 1980). Haldane (1949) pointed out that
the abundance of hosts should be important in host se-
lection by a parasite, and when an exploited host
genotype evolved a high degree of immunity against the
parasite, this should result in a change in the preference
of the parasite to more abundant and less immune host
genotypes. Although Haldane (1949) specifically con-
sidered particular genotypes of hosts in his arguments,
these could readily be applied to selection by parasites
of particular host species. Work by parasitologists has
identified some of the factors responsible for variation in
host specificity. One such rule is that the more special-
ised the host group, the more specialised are its parasites
(Eichler 1948). The degree of specialisation by parasites
may provide information on the relative phylogenetic
age of hosts (Noble and Noble 1976). Therefore, to gain
a good understanding of host selection, it is important to
know the phylogenetically independent values of the
characters that make hosts suitable for exploitation by
parasites. Here we study such characteristics of the hosts
of a generalist brood parasite, the European cuckoo
(Cuculus canorus).

Interspecific brood parasitism is a reproductive
strategy which consists of laying eggs in the nests of
another species, known as the host, which usually pro-
vides care for the eggs and chicks of the parasite. This
reproductive strategy is used by approximately 1% of all
birds species (Payne 1977), and many bird species suffer
from being hosts of brood parasites. For example, the
shiny cowbird (Molothrus bonariensis), an American
obligate brood parasite, has been known to parasitise
more than 180 host species (Friedmann et al. 1977). The
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European cuckoo is also known to parasitise a large
number of host species, with a few main hosts (Glue and
Morgan 1972; Wyllie 1981). Different strains of cuckoos
(gentes) have evolved eggs that mimic those of their
hosts in appearance, and there is thus clear evidence of
specialisation on particular host species (Brooke and
Davies 1988; Mason 1986; Moksnes and Raskaft 1995).
Species which reject cuckoo eggs have been regarded as
unsuitable hosts on the basis of this single criterion
(Rothstein 1982). Egg mimicry could have evolved a
posteriori as a counter-defence against the parasite, and
if this were so, rejecter hosts would then be the agents
selecting for mimetic cuckoo eggs, through natural se-
lection (Brooke and Davies 1988; Qien et al. 1995; but
see Brooker and Brooker 1996). The main hosts may
have particular characteristics, other than similar eggs,
that make them suitable as foster parents for the Euro-
pean cuckoo nestling.

The function of host preferences remains unknown,
but it is likely that cuckoos prefer hosts that provide
suitable food for parasite offspring, or that build nests
from which the cuckoo nestling is able to eject host
offspring, or that do not physically attack the female
cuckoo when she is laying. Some potential host charac-
teristics that are traditionally accepted as important for
cuckoos were summarised by Payne (1977) as follows:

1. The food regime of the host species should facilitate
proper development of the parasite. However, the
growth rate of some brood-parasite nestlings is sim-
ilar when fed by different host species (Payne 1977).

2. Parental behaviour of the parasite and the foster
parents should be compatible, e.g. there should be
some similarity between the begging behaviour of
host and parasite nestlings.

3. Host egg size may be decisive, because eggs are in-
cubated by contact with the hosts’ brood patch, and
contact may be poor if parasite eggs are smaller than
those of the host; hence the cuckoo has evolved a
small egg relative to its body size.

4. Hosts or their nests must be readily available.

5. Host size must be compatible with that of the para-
site.

Since the review by Payne (1977) was published, more
characteristics have been added to this list, such as the
type of host nest and duration of sympatry with the
parasite. However, no study has yet analysed host
characteristics, other than those related to host-parasite
coevolution such as host defences, in relation to para-
sitism by any brood parasite.

More detailed studies are needed on parasitism of
different hosts, because the use of parasitism rate as an
index of host suitability may cause a major error — that
is, apparently unparasitised nests may earlier have held a
cuckoo egg that has already been ejected by the host.
Thus, it can be difficult to estimate the real parasitism
rate of each species with available information. There-
fore, although parasitism and rejection rates are clearly
interrelated (they are not really independent variables),

the only accurate way to estimate the parasitism rate is
to compensate for the ejection rate of the species as
determined from field experiments simulating parasitism
(Rothstein 1982). On the other hand, there are some
problems with using such parasitism rates corrected for
experimental rejection rates because:

1. The rate of rejection is determined by the degree
of mimicry of the cuckoo egg and, therefore, we
should correct for rejection rates measured in the
same populations as the rates of parasitism. However,
such data are not available in the literature, which
more often reports information only on experimental
rejection rates of non-mimetic model eggs.

2. Parasitism rates are likely to be underestimates for
common hosts (because mimetic eggs will be missed
by observers), while parasitism rates for uncommon
hosts are likely to be overestimates.

These arguments suggest that it is more convenient
simply to use data on parasitism rate as a measure of
host suitability.

We attempted to tackle the problem of using the par-
asitism rate in two ways. Firstly, we corrected the para-
sitism rate for the rejection rate of the host species based
on rejection of experimentally introduced non-mimetic
cuckoo eggs (see Appendix 1) by forcing the entry of this
variable into the final multiple regression model. How-
ever, most of the species for which this information is
available are hosts of the European cuckoo, and, there-
fore, it can only be used to analyse differences in para-
sitism rates of known host species. Secondly, we used the
parasitism rate directly in the comparative analyses.

In this paper:

1. We analyse biological features of potential hosts in
order to pinpoint those that may be important in the
process of host selection by the European cuckoo.

2. We also analyse this question by excluding hole
nesters as potential hosts of the European cuckoo,
because some features of the host could be related to
the type of nest used by potential hosts, and also by
excluding corvids, which, due to their great body
mass, are outside the range of potential hosts.

3. Finally, we reanalyse the data using only species that
have been found parasitised by the European cuckoo,
both forcing and not forcing the entry of the rejection
rate into the final multiple-regression model, in order
to determine which variables are able to explain
variance in parasitism rate of European cuckoo hosts.

Materials and methods
Potential host species used in the analyses

To analyse possible features of potential cuckoo hosts, we used as
potential hosts of the European cuckoo all British passerine species
for which there was information available in the literature
(n = 72); 16 of these potential hosts were hole nesters. We found
data in the literature on rejection rate of experimental non-mimetic



eggs for 19 host species with a known duration of breeding season
in Britain (Appendix 1).

Variables analysed in the model

We assembled information on the following variables for each
potential cuckoo host:

1. Rate of parasitism in Great Britain collected from different
sources (Davies and Brooke 1989b; Glue and Murray 1984;
Lack 1963; Wyllie 1981).

2. For a measure of host abundance, we used the number of
breeding pairs during 1988-1991 in Britain, reported by Gib-
bons et al. (1993). When a minimum and a maximum number
of breeding pairs were reported, we used mean values.

3. For a measure of host geographic range size we used number of
10 km x 10 km squares where the species was found breeding
between 1988 and 1991 in Britain (Gibbons et al. 1993). This
estimate also provides a relative measure of population size,
since overall abundance and distribution of birds are generally
positively correlated (Brown 1984; Maurer 1994; Blackburn
et al. 1997). However, for the study of cuckoos selecting hosts,
it could be of interest to distinguish between these two vari-
ables, because, while host density is a local feature, host geo-
graphic range size would be an index of availability of hosts at
different locations. Local abundance and geographic range size
have been shown to be positively related (Blackburn et al. 1997).

4. Body mass (g): the mean value of those reported for male and
female by Perrins (1987).

5. Clutch size, as the mean value of the maximum and the mini-
mum reported by Perrins (1987).

6. Duration of incubation period, as a mean value of the maxi-
mum and the minimum reported by Perrins (1987).

7. Duration of nestling period, as a mean value of the maximum
and the minimum reported by Perrins (1987).

8. Number of broods raised per breeding season (data from Per-
rins 1987).

9. Duration of breeding season, as the season for the occurrence
of eggs without the margins for early eggs and late broods
reported in annual cycle diagrams by Cramp (1985-1992) and
Cramp and Perrins (1993-1994).

10. Hatching asynchrony: whether the duration of the hatching
period exceeded 1 day (data from Clark and Wilson 1981;
Cramp 1985-1992; Cramp and Perrins 1993-1994).

11. Type of nest (open, semi-open or hole nest) from Cramp (1985-
1992) and Cramp and Perrins (1993-1994).

12. Sociality (solitary, semi-colonial or colonial) from Cramp
(1985-1992) and Cramp and Perrins (1993-1994).

13. Type of food that the potential host brings to the nestlings,
from Cramp (1985-1992) and Cramp and Perrins (1993-1994).

14. Rejection rate, as the mean value of those reported from var-
ious sources (Davies and Brooke 1989a; von Haartman 1981;
Jarvinen 1984; Moksnes et al. 1990) not only from studies in
the British Isles, but also from other European countries. We
used the mean value for the rejection rate because Soler and
Moller (1996) demonstrated a high repeatability between values
from different studies (repeatability = 0.73; SE = 0.13;
F = 7.12; df = 13,16; P = 0.0002; Soler and Moller 1996).

15. Degree of mimicry of European cuckoo eggs parasitising dif-
ferent host species as the percentage of cuckoo egg found in
museum collections (in England, Sweden, Germany, Denmark,
Switzerland, Finland, United States, The Netherlands, The
Czech Republic, Hungary, Austria, Serbia (Vojvodina) and
Norway) that mimics those of each host species reported by
Moksnes and Reskaft (1995).

Statistical procedures

Because we were interested in the characteristics that make pas-
serines suitable as hosts of the European cuckoo (features inde-
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pendent of common phylogenetic ancestry), we used available
comparative methods. In a previous article we calculated the re-
peatability of parasitism and rejection rate variables for species for
which there were data available in the literature from at least two
different countries, and both repeatability values were statistically
significant (Soler and Maeller 1996), thereby being candidates for
comparative analyses.

No comparative method allows analysis of potential relation-
ships of more than a single discrete variable with continuous
variables (Harvey and Pagel 1991). On the other hand, in analyses
of the possible relationship between discrete variables and para-
sitism rate (one by one), because the phylogeny of the hosts is
poorly known, only a few contrasts were calculated (hatching
asynchrony: 9; type of nest:5; sociality: 5; type of food that the
potential host brings to the nestlings: 3). Moreover, the contrasts
were estimated for different nodes for each variable (depending on
whether the character changed), and thus the contrast values for
each variable cannot be combined and used in multivariate ana-
lyses. To solve problems with discrete variables in the analyses, we
carried out a canonical correspondence analysis for the discrete
variables (ter Braak 1987), which produced a continuous canonical
axis representing the values of the discrete variables. We introduced
four discrete variables into the correspondence analysis: (1) hatch-
ing asynchrony (yes or no), (2) type of nest (hole-, semi-open, or
open nests), (3) sociality (colonial, semi-colonial, or solitary), and
(4) kind of food brought to the nestlings (insects, mixture of insects
and seeds, or seeds). The analysis provided us with three axes that
explained 100% of the variance (total eigenvalue = 0.12, per-
centage of variance explained: first axis = 55.1%, second ax-
is = 26.0%, third axis = 19.0%), and one coordinate for each
species on each axis. To identify the relationships between each axis
and the different variables, i.e. to interpret the canonical axes, we
carried out Spearman rank correlation analyses between the cate-
gorised data and the coordinates for all three axes (see Table 1 for
the values of the Spearman coefficients for each axis). We per-
formed one correspondence analysis for all species, another that
excluded hole nesters and corvids, and a third one for European
cuckoo host species for which we found data on experimental re-
jection rate and duration of breeding. In this way, we were able to
calculate contrasts for each of the canonical axes. Because we did
not find information on duration of the breeding season for all 72
species, we analysed the data including and excluding this variable.
For all canonical analyses performed, the resulting axes explained
100% of the variance.

Although Sibley and Ahlquist (1991) published a bird phylog-
eny based on DNA sequences, many of the passerine species for
which we found data on the previously described variables are not
in this phylogeny, and thus it was not possible to use that phylo-
genetic information in this study. Therefore, we used the passerine
classification given in Howard and Moore (1991) as a phylogeny.
Although the use of phylogenies based on morphology (traditional
taxonomic classification) could cause some problems, it is prefer-
able to use the most available complete information rather than
making no analyses at all, although analyses should be revised
when the phylogeny becomes better known (Garland et al. 1991).
Moreover, several recent studies have suggested that phylogenies
based on molecular changes may also include inaccuracies such as
branching patterns (Harvey et al. 1992; Nee et al. 1993) and there
are many examples in the literature where traditional morpholog-
ical classification has been used in comparative studies (e.g. Hartley
and Davies 1994; Keller and Genoud 1997; Owens and Bennett
1994).

In the analysis, we assumed polytomies among different species
within the same genus, and among different genera within the same
family; i.e. we assumed that all species in the same genus (or all
genera in the same family) evolved simultaneously from a common
ancestor (multiway speciation events; see Purvis and Garland
(1993) for problems with polytomies, their implications, and pos-
sible solutions). Hence, we have set branch lengths of all species to
the same value (=1) (Garland et al. 1993; Purvis and Garland
1993). We also used two methods to solve polytomies and assign
branch lengths, one method developed by Grafen (1989) that gives
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Table 1 Relationships between the discrete variables and the value
of each canonical axis from the correspondence analysis for A all
species in the analysis, B all species excluding hole nesters and
corvids, and C only species known to be cuckoo hosts and with
information on experimental rejection rate. Values are Spearman
rank order correlation coefficients. Open nesters were assigned a
value of 1, semi-open nesters a value of 2, and hole nesters a value
of 3. Insectivorous nestlings were assigned a value of 1, semi-in-
sectivorous nestlings a value of 2, and seed eating nestlings a value
of 3. Synchronous species were assigned a value of 1, and asyn-
chronous species a value of 2. Solitary species were assigned a value
of 1, semi-colonial species a value of 2, and colonial species a value
of 3

Axis 1 Axis 2 Axis 3
A All species in the analysis (n="72)
Hatching asynchrony 0.067 0.593 0.200
Type of nest —-0.860 —-0.260 —-0.200
Sociality 0.262 —-0.516 0.456
Type of food 0.662 -0.310 -0.271
B Non-hole nesters and non-corvids (n=51)
Hatching asynchrony —0.725 —-0.396
Sociality 0.491 0.275
Type of food 0.709 -0.390
C Cuckoo host species (n=22)
Hatching asynchrony —0.098 0.653 0.576
Type of nest —-0.891 0.051 —-0.196
Sociality 0.408 0.472 —-0.381
Type of food 0.625 —0.488 -0.121

greater weight to those species or nodes whose data points are not
well explained by the phylogeny or by the other predictor variables
under consideration, and another developed by Pagel and Harvey
(1989) which relies on the assumption that the X (or Y) variable
can provide useful information about the hidden phylogenetic
structure in the multiple node. These methods can be applied to
imperfectly resolved phylogenies, such as might be the case if a
taxonomy were used instead of a phylogeny, as in the present
work.

To control for the possible effects of common phylogenetic
descent we used the independent-comparison method of Felsen-
stein (1985) as implemented in a computer program written by
Garland et al. (1993). This method finds a set of independent
pairwise differences or contrasts, assuming that changes along the
branches of the phylogeny can be modelled by a Brownian motion
process (successive changes are independent of one another), and
that the expected total change added together over many inde-
pendent changes is zero (Harvey and Pagel 1991). Therefore,
pairwise differences in the phylogenetic tree are independent of
each other (Harvey and Pagel 1991). The advantage of the inde-
pendent-comparison approaches is that, by partitioning the varia-
tion appropriately, all contrasts can be used to assess a hypothetical
comparative relationship (Harvey and Pagel 1991). We calculated
Felsenstein’s independent contrasts for all the potential con-
founding variables, including those non-continuous variables. For
the calculation of contrasts, we used normalised values of contin-
uous variables and the coordinates on the axes from the corre-
spondence analysis for non-continuous variables. Thus, we
obtained a set of contrasts for each variable estimated from the
same node or species pair.

To study the possible relationships between the level of para-
sitism that each host is suffering by the European cuckoo (para-
sitism rate) and different life-history variables of the potential
hosts, we used the standardised independent contrasts (from the
independent-contrast method of Felsenstein 1985) in a forward
stepwise multiple regression analysis (F value to enter in the model
additional independent variables = 3.00) forced through the ori-
gin, where parasitism rate was the dependent variable and all the
others were independent variables.

Some variables in the analysis could be interrelated, and, in
order to solve this problem, we carried out a principal component
analysis (PCA) with the values of contrasts of all dependent vari-
ables derived from a phylogeny with all branch lengths equalling
one. However, the variables shared little variance, the eigenvalue of
the second factor being less than 2 (eigenvalue factor 2 = 1.68) and
the three first axes explaining only 58.7% of the variance. There-
fore, for a better understanding of the results, we used the contrast
value for each variable instead of the principal-component coor-
dinate for each factor. It is known that the kind of nest used by
potential hosts is one of the most important physical constraints on
parasitism by the European cuckoo, because the opening of a nest
hole is usually too small to allow the young cuckoo to fledge (Qien
et al. 1995). Furthermore, hole-nesting birds have a reduced risk of
predation that has resulted in evolution of a long nestling period
(Bosque and Bosque 1995; Lack 1968) and large clutches (Lack
1968). Corvids are not potential hosts of the European cuckoo
(although Cyanopica cyana is a cuckoo host in Japan: Nakamura
1990). Therefore, we analysed the data including and excluding
hole nesters and corvids from the analysis. To identify variables
explaining differences in parasitism rate suffered by species known
as a hosts, we used those for which information was available for
all variables (n = 19), and in order to control for problems related
to host ejection of cuckoo eggs before nests were checked, we
forced, the rejection rate in the multiple-regression analyses as an
independent variable.

All variables introduced in the analyses were normalised
(Kolmogorov-Smirnov tests, n.s.): parasitism rate was trans-
formed to log(n + 0.001), population density of the host species
was fourth-root transformed. Host geographic range size and
duration of breeding season were already normally distributed,
body mass, clutch size and incubation period were log(n) trans-
formed, the duration of the nestling period was log;o(n), rejection
rates and degree of mimicry were transformed to arcsin(n), axes
1 and 3 were already normally distributed, and axis 2 and
number of broods raised per breeding season were binomial. All
tests were two-tailed.

Results
Variables explaining cuckoo host selection

The analysis of the relationship between the standard-
ised contrasts of the different life history variables of the
potential hosts and the standardised contrasts of the
parasitism rate showed that only three variables ex-
plained a significant proportion of the variance: host
geographic range size (positively related), the duration
of the nestling period (negatively related), and the kind
of nest selected (first canonical axis) (selecting open
nesters). This was the case regardless of the method used
to estimate branch length (Table 2). These three vari-
ables explained more than 28.1% of the variance (mul-
tiple R > 0.52, F > 8.7, df = 3,68, P < 0.00000;
Table 2). When duration of the breeding season was
used as an additional independent variable (thereby re-
ducing sample size, see Methods), the result was similar
and only geographic range size of the hosts and the
duration of the nestling period explained a significant
proportion of the variance independently of the method
used to estimate branch length (R> > 0.39, F > 14.5,
df = 2,45, P < 0.000011; Table 2; Fig. 1).

Because the duration of the nestling period could
be related to the kind of nest used, and corvids fell
outside the body-size range of potential hosts, we re-



analysed the data for non-hole nesters and non-corvids
only. The results were similar, showing that, regardless
of the method used to estimated branch length, the
most important predictor of parasitism rate was host
density (partial correlation coefficients, R > 0.41,
t > 3.19, df = 49, P < 0.0024; Table 2) and the du-
ration of the nestling period (partial correlation coef-
ficients, R < —0.327, t>2.4, df =49, P < 0.02
Table 2) (only these two variables were statistically
significant). Both variables explained more than 24%
of the wvariance in the parasitism rate (multiple
R > 049, F > 7.69, df = 2,48, P < 0.0013; Table 2).
When the duration of the breeding season was used as
an additional independent variable, geographic range
size of the hosts, but not host density, and duration of
the nestling period were the variables that best ac-
counted for the parasitism rate (geographic range size,
partial correlation coefficient, R > 0.56, ¢ > 4.1,
df = 38, P < 0.00017; duration of the nestling period,
R < —045, t > 3.12, df = 38, P < 0.0034; Table 2).

Therefore, host population size (geographic range
size or density) and the duration of the nestling period
explain why some passerine species are more suitable
hosts of the European cuckoo than others.

Variables explaining differences in parasitism rate
of known European cuckoo hosts

In this analysis of 19 species of hosts of the European
cuckoo, we introduced the level of mimicry of cuckoo
eggs and the rejection rate as additional variables. The
results of a stepwise multiple-regression analyses of
the phylogenetically independent contrasts showed that
the European cuckoo preferentially selects hosts with a
longer breeding season, and those with eggs that the
cuckoo can mimic. No other variables were statistically
significant (Table 3). However, when rejection rate was
forced to enter into the final model (see Methods),
thereby controlling the final model for this variable,
duration of breeding season was the only significant
variable (Table 3).

Discussion

Although the European cuckoo is able to parasitise a
large number of passerine species, it has evolved clear
preferences for particular species. For example, the
number of hosts reported in Britain exceeds 50, but only
three species, dunnock (Prunella modularis), reed war-
bler (Acrocephalus scirpaceus) and meadow pipit (Anthus
pratensis) accounted for 77% of all cases of parasitism
(Glue and Morgan 1972). These host preferences must
be related to differences in fitness obtained by parasitism
of different hosts, and particular host characteristics
may be responsible for such differential parasite fitness.
One of the most obvious host characteristics, directly
related to parasite fitness, is whether the host is able to
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recognise and reject cuckoo eggs. Although it has been
shown that cuckoos have decreased their use of some
rejector species, because of the great costs for the brood
parasite of host rejection of foreign eggs (Rothstein
1990), brood parasites are still using particular host
species rather than switching to acceptor species. A
fundamental question regarding host use by cuckoos is
whether host use is genetically inherited or arises by
imprinting. However, an analysis of genetic differentia-
tion of host race using mitochondrial and microsatellite
DNA variation found no significant differences among
cuckoos from different hosts (Gibbs et al. 1996).

Recognition of foreign eggs by common cuckoo hosts
is a non-intrinsic host characteristic resulting from host-
parasite interactions possibly depending on the duration
of coevolution between parasite and host populations
(Davies and Brooke 1989a,b; Qien et al. 1995; Soler and
Moller 1996; but see Brooker and Brooker 1996).
Moreover, different populations of the same species can
be rejectors or acceptors depending on the duration of
sympatry between parasite and host, such as meadow
pipit and pied/white wagtail (Motacilla alba) (Davies
and Brooke 1989a) or magpies (Soler and Mgller 1990).
Therefore, the fact that the parasite does not dramati-
cally change host species, despite the high costs of egg
rejection, may be because of beneficial host character-
istics that are important for the proper development of
the offspring of the parasite, but perhaps also because
cuckoos have a genetically based host choice.

Some host characteristics that did not explain a sig-
nificant proportion of the variance in parasitism could
still be important in the process of host selection by the
cuckoo. The low variance of these variables among
hosts, and the relationships between different life-history
variables of hosts, may mask their importance in the
comparative analyses. For example, all hole nesters in
the analyses feed their chicks with insects, and all seed-
eaters are non-hole nesters. Since the European cuckoo
rarely parasitises hole nesters (see Appendix 1), a pref-
erence of the brood parasite for non-hole-nesting hosts
would be confirmed by the comparative analyses. Due to
the relationship between hole-nesting and the kind of
food brought to nestlings, the analysis could even detect
an apparent relationship between parasitism and food
provided for nestlings. Other important interrelated
variables are (1) the body mass of the potential host
species and the duration of the incubation and the nes-
tling periods, and clutch size (Lack 1968), (2) the dura-
tion of the nestling period, clutch size and incubation
period (Siikamdki 1995), and (3) relative population size
and degree of sociality.

Our results showed that host population size (mostly
geographic range size) and the duration of the nestling
period of the host were related (positively and nega-
tively, respectively) to parasitism rate suffered by dif-
ferent potential host species. The relatively large
importance of the population size of potential hosts as a
predictor of parasitism by the European cuckoo makes
intuitive sense. This result is consistent with the predic-
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ods is the low risk of nest predation compared to spe-
cies with longer nestling periods (Bosque and Bosque
1995; Lack 1968). However, nestlings of the European
cuckoo spend around 17 days in the nest, independently
of the host species (Wyllie 1981), and therefore, the
predation risk of a nest with a cuckoo nestling would be
independent of the host species. However, species with
a relatively short nestling period also have high growth
rates (Lack 1968), and, therefore, the food requirements
by the chicks of such species are higher than for species
with a low growth rate. Hence, the growth rate may
reflect a trade-off between selection for rapid growth to
escape predation and selection for slow growth to re-
duce food requirements (Lack 1968). An example of
this effect is the low growth rate of hole nesters (Gill
1990). The family Cuculidae, which contains both
brood parasites and non-parasitic species, has a short
nestling period for their body mass (Lack 1968). This
means that their chicks need a large amount of food per
day to support their fast growth rate. Therefore, brood-
parasitic cuckoos should select hosts based on their
growth rate and, because they need foster parents that
are able to provide chicks sufficiently for a high growth
rate, they should select hosts with relatively short nes-
tling periods.

The duration of the nestling period is also related to
clutch size, and larger clutches are commoner in species
with low predation rates (hole nesters) and long nestling
periods (Gill 1990; Lack 1968). However, clutch size did
not enter the final models explaining variation in para-
sitism rates, but it was related to other life-history
variables such as duration of the breeding season (in-
dependently of the method used to resolve polytomies,
R < -0.29, n = 47, P < 0.05). Therefore, clutch size
could also be an important factor per se due to the
ejection behaviour of the cuckoo chick (Wyllie 1981),
and it would be beneficial for the brood parasite to select
hosts with a small clutch size, thereby reducing the cost
of ejecting host eggs and/or chicks for the cuckoo nes-
tling. This activity is very costly (the eggs or the chicks of
the host are very heavy, normally more than half the
mass of the cuckoo chick), and sometimes the cuckoo
chick is exhausted after ejecting one host egg or chick
(Palomino, personal communication). For example, it
has been proposed that their deep nests explain the low
parasitism rate suffered by thrushes (Turdus spp., Mo-
ksnes et al. 1990), because of the difficulty for the cuckoo
chick of ejecting the eggs and chicks of the host.

Another possible reason why the cuckoo prefers host
species with small, fast-growing broods is that such

species are more likely to be able to renest the same
season and, therefore, are better able to cope with the
costs of parasitism (Brooker and Brooker 1996) and
offer new opportunities for the parasite. Although the
number of broods raised during the breeding season did
not significantly improve the model explaining parasit-
ism rate, the number of broods is significantly related to
the duration of the breeding season, given that species
with more than one breeding attempt have longer
breeding seasons than those with only one attempt.
Thus, both the number of breeding attempts and the
duration of the breeding season are related to temporal
availability of hosts.

Recently, Blackburn et al. (1996) showed that the
abundance of British birds correlated with life-history
variables corresponding to rate of offspring develop-
ment: more abundant species are those that develop
faster. This suggests an interrelationship between the
two principal factors influencing host choice in cuckoos.
However, because both host availability (geographic
range size or density) and duration of the nestling period
are included in the same multiple regression model, the
partial correlation coefficients are by definition con-
trolled for each other’s effects. Therefore, although in-
terrelationships among these two variables were not
investigated, the detected effects of geographic range size
(or density) of potential hosts and the duration of the
nestling period on parasitism rate are independent of the
relationship between those variables.

With respect to the discrete variables such as
hatching asynchrony, type of nest, sociality, and type
of food that the potential host brings to the nestlings,
we found no significant relationship with parasitism
rates. However, we do not exclude the possibility that
they are important for cuckoo host selection because
(1) the phylogeny of potential hosts is poorly known
and, therefore, the number of independent contrasts is
very small, and (2) the relationships between the dis-
crete variables and other life-history variables are
sometimes strong.

In conclusion, we provide comparative evidence
suggesting that host availability (in time and space) and
the duration of the nestling period of potential hosts
explain host selection by the European cuckoo.
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